Breathing Air System

Breathable air

Our bodies have a limited capacity to filter the air we breathe. Anything much smaller than 10µm will travel past the nose and into the lungs. When contaminants reach the lungs, respiratory illness can occur, but when they hit the bloodstream they can be deadly.

Carbon monoxide gas has no odor, taste, or color, but even in small concentrations it is quickly absorbed into the bloodstream. It has a detrimental effect on coordination, reaction time, and visual acuity, subjecting even the most safety conscious worker to accidents. In higher concentrations, it is lethal.

The KBS is a complete purification system designed to remove excessive moisture, solid particles, oil and oil vapor, and carbon monoxide from ordinary compressed air. The OSHA Grade D air it produces can efficiently feed face masks, hoods, and other breathing devices to protect worker health and safety.

Meets health and safety requirements

Environmental safety standards regulate the need for fresh air supplies to ensure workers safety. Kaeser Breathing Air Systems are engineered to supply Grade D breathing air for flows from 15 to 940 scfm in accordance with the following standards:

- **OSHA:** CFR1910.134 (Occupational Safety and Health Assoc.)
- **CSA:** Z180.1-00 (Canadian Standards Assoc.)
- **CGA:** Pamphlet G-7 (Compressed Gas Association)
- **ANSI:** Z88.2-1080 (American National Standards Institute)

Typical applications

Petrochem industries - oil and gas industries must protect their workers from inhaling hazardous fumes, gases, and vapors inherent in gas and chemical processing operations.

Construction industries - proper handling and working protection is critical to the health and safety in shot blasting and asbestos remediation.

Coating and paint spraying - automotive and manufacturing environments utilize atomized paint to spray coatings. Workers can be exposed to airborne paint emissions. Even small scale auto body shops and light manufacturing need to provide workers with clean breathing air.

Confined spaces - mines, vats, tanks, boilers, ships’ hulls, and even grain storage facilities can be deadly traps of stale or contaminated air.
Features and options

Instrumentation
- Left and right tower pressure gauges
- Purge pressure gauge
- Inlet pressure gauge
- Color change moisture indicator

Standard Controller
- NEMA 4/4X with critical LED indicators
- Soft on/off switch with 2 power recovery modes
- Switching failure alarms
- Adjustable service indications
- Tower / valve status LED’s
- Voltage free common alarm contacts
- RS232 communications port

Filtration and monitoring (not shown)
- Coalescing filters with automatic drain valves and differential pressure gauges
- CO catalyst converter
- Particulate afterfilter with differential pressure gauge
- Activated carbon filter
- Air sample ports for optional analyzer installation

OPTIONAL Advanced Controls
- Purge Saver - automatically matches purge air consumption to air demand to save energy

Recommended option: Carbon Monoxide (CO) monitor
- Digital readout of CO concentration
- Visual and audible alarm
- Adjustable high and low alarms
- Contacts for remote alarm
- Push-to-test button
- Multiple alarm capabilities
- CO and oxygen
- CO and dew point
- CO, oxygen, and dew point

or Wall-Mount CO Monitor Kit
- For CO only

Other options
- Nema 7 electrics (explosion proof)
- Copper/brass or stainless steel instrument tubing and fittings for severe environments
- SSPC-SP10 sandblast and epoxy paint for severe environments
Technical Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>Rated Capacity* (scfm)</th>
<th>Outlet Flow (scfcm)</th>
<th>Power Supply (V / Ph / Hz)</th>
<th>Inlet/Outlet Conn. (in.)</th>
<th>Dimensions W x D x H (in.)</th>
<th>Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KBS 15</td>
<td>18</td>
<td>15</td>
<td>85-264/1/47-63 AC 11.5-28 V DC</td>
<td>1/2 NPT (F)</td>
<td>42 x 38 x 49</td>
<td>440</td>
</tr>
<tr>
<td>KBS 25</td>
<td>30</td>
<td>25</td>
<td></td>
<td>1 NPT (F)</td>
<td>42 x 38 x 64</td>
<td>560</td>
</tr>
<tr>
<td>KBS 35</td>
<td>42</td>
<td>35</td>
<td></td>
<td>1 NPT (F)</td>
<td>42 x 38 x 81</td>
<td>700</td>
</tr>
<tr>
<td>KBS 50</td>
<td>60</td>
<td>50</td>
<td></td>
<td>2 NPT (F)</td>
<td>49 x 45 x 56</td>
<td>820</td>
</tr>
<tr>
<td>KBS 75</td>
<td>90</td>
<td>75</td>
<td></td>
<td>2 NPT (F)</td>
<td>64 x 52 x 66</td>
<td>1405</td>
</tr>
<tr>
<td>KBS 95</td>
<td>114</td>
<td>95</td>
<td></td>
<td>2 NPT (F)</td>
<td>64 x 52 x 74</td>
<td>1560</td>
</tr>
<tr>
<td>KBS 135</td>
<td>162</td>
<td>135</td>
<td></td>
<td>3 FLG</td>
<td>62 x 85 x 111 13/16</td>
<td>3275</td>
</tr>
<tr>
<td>KBS 205</td>
<td>246</td>
<td>205</td>
<td></td>
<td></td>
<td>65 1/8 x 81 13/16 x 115</td>
<td>3750</td>
</tr>
<tr>
<td>KBS 305</td>
<td>366</td>
<td>305</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KBS 375</td>
<td>450</td>
<td>375</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KBS 490</td>
<td>590</td>
<td>490</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KBS 625</td>
<td>750</td>
<td>625</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KBS 775</td>
<td>930</td>
<td>775</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KBS 940</td>
<td>1130</td>
<td>940</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Rated Capacity: Based on compressed air saturated at 100°F and 100 psig.

Inlet Pressure (psig)	Inlet Temperature (°F)
60 | 100 105 110 115 120
70 | 0.65 0.64 0.62 0.60 0.58
80 | 0.83 0.81 0.80 0.77 0.74
90 | 0.91 0.89 0.87 0.85 0.81
100 | 1.00 0.98 0.96 0.93 0.89
110 | 1.04 1.02 1.00 0.97 0.93
115 | 1.06 1.04 1.02 0.98 0.94
120 | 1.08 1.06 1.04 1.00 0.96
125 | 1.10 1.08 1.06 1.02 0.98
130 | 1.12 1.10 1.08 1.04 1.00
140 | 1.16 1.14 1.11 1.08 1.03
150 | 1.20 1.18 1.15 1.12 1.07

Selecting the proper model

To correct rated capacity for actual operating conditions, refer to “Capacity Correction Factors for Operating Conditions” and find the capacity correction factor corresponding to the inlet pressure and temperature. Multiply the capacity correction factor by any purifier’s rated capacity to determine its capacity at your operating conditions. Capacity correction factors for conditions not shown may be interpolated. To determine purge air volume, subtract outlet flow from rated capacity. To determine the outlet flow at your operating conditions, subtract the purge air flow from the capacity at your operating conditions. Consult factory if assistance is needed.

KBS purifiers help meet standards for breathing quality compressed air

The table below shows a comparison of the maximum allowable concentrations of contaminants allowed by OSHA standard 1910.134 for Grade D breathing air.

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Max. Allowable Concentration OSHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Monoxide (CO)</td>
<td>10 ppm or mL/m³ by volume</td>
</tr>
<tr>
<td>Carbon Dioxide (CO₂)</td>
<td>1000 ppm or mL/m³ by volume</td>
</tr>
<tr>
<td>Condensed Hydrocarbons</td>
<td>5 ppm/m³</td>
</tr>
<tr>
<td>Odor</td>
<td>Not Detectable</td>
</tr>
<tr>
<td>Moisture Content</td>
<td>10°F (5.6°C) below ambient temperature (at 1 atm. pressure)</td>
</tr>
</tbody>
</table>

Notes:
- The OSHA standard states that compressed breathing air shall meet at least the requirements for Type 1 - Grade D breathing air described in the ANSI/Compressed Air Gas Association Commodity Specification for air ANSI/CGA G-7.1.
- The KBS will remove only those gaseous contaminants normally absorbable by activated carbon. Air that is grossly contaminated or oxygen deficient cannot be purified to levels acceptable for breathing.

www.kaeser.com

© 2018 Kaeser Compressors, Inc. All rights reserved. 07/18

USKBS